First Principles of
Digital Signal Processing

Ward Harriman AE6TY
Pacificon ’| 3

The Basics

Most of us know the basics of electronic circuits:
1) Kirchhoff’s current law
2) Ohm’s law
3) Thevenin and Norton Equivalents.

Most of us understand how to apply these rules to circuits
which have reactive components such as Caps and Inductors.

Today, I'd like to present what | think are the basics of Digital
Sighal Processing.

Lets get started.

Chapter one:
The Discrete Time Fourier Transform

Y /'U'U
‘1 ‘\‘

i/ 1:0
‘i N

AN-1)-0
L W N

W
Wit

H\ N-1)1

oo Wa

A0 (N-1)
- Wy

+1-(N-1)
. W N

.,.{ N-1)(N-1)

[Xu X

- Xnoa]

Implemented using standard linear algebra with the “W” matrix.

For the visual learners....

andrew.nerdnetworks.org/classes/commit/fft-factoring.pdf

Here is a graphic representation.

Stage 1 Stage 2 Stage 3

#{(0) o

x(4) ®

» ® X(2)

W
3 A’A’A’A o

o > NS

x(5) @—re=
- vv o
w

x(2}

- 1]

WD 2
x(3) » - : :—8 > * X{6)
-1 -1
wO 2 . wg
x(7) » is i - - > -t X(T)

-1 -] -1

Figure TC.3.3 Eight-point decimation-in-time FFT algorithm.

\ o / - X{0)
N ® X(1)

. XG)

'www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.htmi

Where the W matrix is expressed as
rotations of the unit vector in the
complex plane

WAIT T

NUMBERS QF THE FORM
nf-I ARE “IMAGINARY"
BUT CAN STILL BE USED
IN EQUATIONS,

OKAY.
AND e™7.-1. }

— NOW YOURE JUST
- | MESSING WITH ME.

ih A

Yes, I'm Messing With You

Many Digital Signal Processing text books and primers actually
start out like my first few slides.

BUT: it doesn’t have to be that way.

By understanding a few of the basic principles of DSP you can
1) understand the limitations of the technology
2) appreciate the clever solutions others have found
3) develop a sixth sense for detecting ‘unreasonable’ claims.

The Basic Steps.

Nearly all Digital Signal Processing applications have these
steps:

1) Convert an analog signal to digital.
2) Process the numeric data.
3) Convert the numeric data into analog.

There are fundamental techniques and limitations involved
with each step.

Steps 1 and 3 are, strictly speaking, NOT “Digital Signal
Processing” but are worth reviewing so... lets start there.

Analog to Digital Conversion

Probably the very first specification in any A/D conversion is
the ‘number of bits'...

1) Wide range, 8 bits to 24 bits are quite common.

2) Number Format: for today, we’ll say ‘fixed point’.

Tradeoffs:
1) more bits generally means more time OR more power.
2) more bits requires faster processor.
3) fewer bits means more ‘quantization noise’.
4) dynamic range of signal can dictate # of bits required.

Quantization Noise

We can examine the impact of “number of bits”...

example: quantization

= <Spectra — .
3> ’” T il T <M

| >sin 7 v v S "\ DR il B REES S ", LR S SRR SR S R S :-.-.waﬂnﬂer:wt:;

= 1 o

Notice the noise in the spectrum:
We can play with the number of bits....

Analog to Digital Conversion

And without taking a breath, we ask about “sample rate”.

There is a HUGE range in sample rates, anywhere from 1/day
to tens/nanosecond.

Tradeoffs:
1) Higher rate takes more power.
2) Higher rate requires faster processor.
3) Sample rated dictated by ‘frequency’ of analog signal.

Introducing “Nyquist”.

Basically, Nyquist tells us that you must sample at ‘twice the
highest frequency of your input signal’.

Here’s why... example: Nyquist

Notice: both input waveforms have the same ‘samples’!
this problem is called ‘aliasing’.

Nyquist Filter

To avoid any problems associated with ‘aliasing’ of high
frequency signals, an analog filter is generally placed before

the A/D conversion:

N\ < p—

Analog Low Pass A/D N bit
Signal Filter Converter Numbers

However:
Since these ‘antialiasing’ filters are generally
analog and have some ‘skirt width’, a common

tradeoff is:

You need to sample 3 times the highest
frequency, not just twice!

Digital to Analog Conversion

Lets jump to the process of Digital to Analog conversion
because it encounters many of the same issues as the A/D.
Again:

Number of bits:
1) more bits generally means more time OR more power.
2) more bits requires faster processor.
3) fewer bits means more ‘quantization noise’.
4) dynamic range of signal can dictate # of bits required.

Sample Rate:
1) Higher rate takes more power.
2) Higher rate requires faster processor.
3) Sample rated dictated by ‘frequency’ of analog signal.

One Significant Difference:

In A/D conversion we had to eliminate any alias frequency

signal IF IT WAS PRESENT.

In D/A conversion, the ‘alias’ frequencies are ALWAYS
present. Here is an example of a a ‘pure’ signal:

<8.bO>

Spectra

<9.00>

<T*>f
< Signa|sp———

' &

Primary Signal

EXAMPLE: d2a

/

Aliases !l

Anti Aliasing Filter

So, just as with A/D conversion, D/A conversion must have
an antialiasing filter.

— >\

N bit D/A Low Pass Analog
Numbers Converter Filter Signal

And again, because the filters are often analog, we need
room for the ‘skirts’ and so, the D/A conversion rate is often
3 times the highest frequency of interest.

The GOOD Stuff:
Digital Signal Processing

Having gotten A/D and D/A out of the way, lets talk about the
fun things: the actual Signal Processing.

It is often easier to discuss a new topic in the framework of a
familiar one. To that end, lets talk about DSP as it applies to
filters.

Many DSP algorithms start out by gathering up a number of
samples from the input. We’'ll call those samples the ‘input

buffer’.

Getting Started with DSP

A Simple Beginning: a very narrow band filter.
To Implement this filter we’ll use a DSP technique called “Correlation”

“Correlation” compares the ‘incoming’ buffer with a ‘reference’ buffer:

Incoming Samples Implementing “Correlation”

— Multiply together elements of arrays

SESae

H and then

\ Add together the products to get ‘H’.

Reference

First Principle: Correlation

Correlation has some very important properties.

1) if two signals are the ‘same’ then ‘H’ is large positive.

2) if two signals are exactly opposite, then ‘H’ is large negative.
3) if two signals are exactly ‘out of phase’ then H is ‘0.

4) if two signals are different then H will be zero.

5) ‘H’ is linear with amplitude of the reference and/or the signal.

example: correlation
1) change phase
2) change amplitude
3) change frequency.

Example: single frequency filter.

Here is a single frequency filter example:
1) The ‘reference’ is 128 samples long with 15 full cycles.
2) the ‘Sweeper’ sweeps frequencies from 1 to 40 cycles
3) the ‘shiftReg’ records the ‘last’ 128 samples.
4) the ‘dot’ does the correlation.

What should we see as reference
engt 128
the output spectrum? qoes IS =
amplitude
Only the 15 cycles should fef\
‘eeper dot
get th rOUgh, rlght? pSerioZ 138 m? sameness
Iuoweerr 1 shiftReg /m
ramp | LOE-S of:ﬁngth 128)
example: singleFreqFilter dly

Example: single frequency filter.
Unfortunately, NO! WMWWWMWW I ||| .|”“ i WMMWW

Here is what we see:
There is the main filter|
frequency AND these |.,.
pesky little side lobes.

Sk W
Those side lobes are only down by 12.6 dB or so.

Where did they come from, and how do we get rid of them?

Example: single frequency filter.

Lets look closely at

the output of out filter. WWMWMMWWWMWWWWWWMMWWNM\WMW

“fcoboreference.re

As we might expect,
the output is zero when
the input signal has
exactly N cycles in the
shift register.

The peaks occur when a signal has between N and N+1 cycles in the shift
register.

Principle 2: Spectral Leakage.

Those side lobes are called ‘spectral leakage’ and stem from the violation
of a fundamental assumption of correlation.

This fundamental assumption is that the input signal is repetitive: if the
shift register is 128 samples long then it is assume that every 128 samples
the contents of the shift register will repeat. This is NOT the case when
the input signal is not an integral number of cycles.

Consider these two waveforms, one 3 cycles and one 3.5 cycles.

L /,_,

(>'"'""""\--:,"""""""/'""""""':‘i,' S, K — T R R IEE IR 0 f‘&f’l(&'@:f‘&i‘n"

7

it Ty . R

------------------------------ Abuunnugu---- EEEERERE eference_ref

Spectral Leakage

If this waveform is placed end/end it is clear that the assumption is
violated. It is this discontinuity/ which causes the problem.

How can this discontinuity be avoided? As it turns out, by brute force,
we simply force the contents of the shift register to conform to the
assumption as best we can.

This is called “Windowing”. There are dozens of ‘window’ functions but
they all do basically the same thing: force the shift register contents to

conform.

Principle 3: Windowing

One of the most common window functions is called the ‘raised cosine’.
We simply scale the input data by multiplying the original contents as

follows:

Multiply each entry in the shift register by the corresponding entry in the
‘raised cosine’ signal. You get the signal at the bottom. The contents of
the shift register decay towards zero at each end.... no discontinuity there!

Of course, this is not without cost. The signal has been blurred and so the
filter output spectrum will be affected.

Principle 3: Windowing

Here is the result of applying the raised cosine:

: —<Spectra>=——
<0.09> <0.15>

example: sweepFreqFilter2 MW@(\MWWWW i

The blue signal is the filter
output after applying the
raised cosine window. The
side lobes are much lower,
approximately 33 dB down.

However, the ‘skirt’ of the filter has gotten wider. It is now about twice as
wide as before.

As a general (but not universal) rule, when windowing, lower side lobes
result is wider skirts.

Improving Performance.

It would seem that this windowing would have a significant performance
impact. Consider:

Before windowing we added up the products of shiftReg[n] * reference[n].
With windowing, we add up shiftReg[n] * raisedCos[n] * reference[n].

BUT: we can see that we can apply the raised cosine to the reference
instead and get the same results!!!

example: sweepFreqFilter3

Notice outputs are the same regardless of where windowing is done.

Windowing Performance.

Here is a screen shot. As we can see, there is no difference and SO,
windowing costs compute cycles only while building the reference, not

while doing the real work!!! e

= ' m
Notice how the raised cosine e
is applied to the reference B | e 0
in one path and the sample Spcie T 7 ke 070 st 52— o |
data in the other. The outputs T T

exactly overlap!

Principle 4: Linearity.
Most of us are familiar with the concept of linearity. In essence it says:

If input signal A1 produces output signal B1
and
input signal A2 produces output signal B2

then
A1+A2 will produce B1+B2

This is a hugely valuable property because it means we can build very
sophisticated filters.

Principle 4: Linearity.

Consider this application... | want my filter to pass two frequencies.
BUT... | want to attenuate one frequency by a factor of 2.
The block diagram could be:

example: twoFregFilter

Notice ‘reference’ has
an ‘amplitude’ of 1/2.

In essence, two filters
are provided and their
outputs are combined.

dot0

in0 sameness
inl

add

dot

in0 sameness

reference

length 128

cycles 15

phase

amplitude
ref

referencel

length 128

cycles 10

phase

amplitude |
re

Sweeper

period 128

lower |5 shiftReg

upper |20 length

ramp | 1.0E-5 is\ng 28 out
o] dly

inl

Principle 4: Linearity.

Here is the output of this circuit is as expected:

: <Spectra>—
<0.09>

If we wanted to pass a band of N frequencies we could build N filters OR
we could use linearity to restructure the filter

Principle 4: Linearity.

Restructured filter with raised cosine added: simply add the two references

together and apply the raised cosine and use the result as the ‘reference’
for the filter.

The implications of this simple

technique are HUGE! It means we bcl

can build a filter of any bandwidth |F" |~

and adjust the amplitude and o e

phase response of each individual / — ——————, i

frequency.....

And it doesn’t take any more
computing than a simple single
frequency filter!

Principle 5: Spectral Resolution

Lets change gears.

How can we determine the ‘spectral resolution” of our DSP
system?

Lets think back to our filter example. The simple filter (no
windowing) had the best skirt. (Not the best stop band!)

This skirt represents a measure of the spectral resolution of
a particular DSP algorithm.

So how wide, in frequency, was this skirt?

Principle 5: Spectral Resolution

Here is a plot of a filter for ‘DC’.

DC Exactly 1
Cycle

As can be seen, the skirt width is whatever frequency has
exactly 1 cycle in the shift register.

This means, to a good approximation, the skirt width is
controlled by HOW LONG (in time) the shift register is.

Principle 5: Spectral Resolution

For example, if the shift register contains 1 millisecond of
the input signal then this filter skirt will be 1 kH wide.

If the shift register contains 10 milliseconds, the filter skirt
will be 100 Hz wide.

There are some important implications of this.

1) There is no substitute for ‘time’.
If you want to measure the frequency of a signal to high
resolution, you have to take your time.

2) The ‘Sample Rate’ has nothing to do with it.
Sampling a signal at a higher rate does NOT improve
frequency resolution!

Principle 5: Spectral Resolution

Here is a plot showing the spectrum of a sighal with different
‘shift register’ lengths but the same sample rate.

example: spectralResolution

‘---l---l--l--l--' ------------------- ‘-llll"- ----------- Epexctrum.spectrum(Jp 128

e b tad lI.l.H L1t b e e s s v s v h....gl Ciad ll.l.H Ll cir s e wimre s e spectrumO0. spectrumf)- 512

I 1

As can be seen, spectral resolution is a function of how LONG,
in time, the signal has been observed.

Wrap Up
In this presentation:

1) We started out reviewing basic A/D and D/A conversion.

1) number of bits.
2) Sample rate... Nyquist and AntiAliasing filters.

2) We then examined some “First Principles of DSP”...
1) Correlation
2) Spectral Leakage
3) Windowing
4) linearity
5) Spectral Resolution

We didn’t talk about:

Notice that we DIDN’T Talk about:

1) Fourier Transforms
2) Laplace and Z transforms
3) Finite Impulse Response Filters

Summary and Thank You

| hope this presentation has:
Given you a chance to review basic A/D D/A issues
Introduced some of the basics of DSP processing.

Provided a foundation for further investigation.

Thank you.

With TIme: A/D Sensitivity and Noise

One of the counter-intuitive properties of Digital Signal Processing is
that noise is NOT ALWAYS your enemy.

Indeed, it can improve the sensitivity of your A/D converter.
To demonstrate this: 1noiselnjection

Notice how adding some noise will bring out a signal which was
otherwise undetected:

With Time: Over Sampling and Decimation

One of the things which perplexed me for a long time was the fact
that one can use oversampling and decimation to improve sensitivity
and dynamic range of and A/D converter.

How can this be?

In essence, one simply samples N times and then averages those N
samples (overSample by N, decimate by N).

Here is an example of N = 16. example: decimation

NOTE:
effectively adds Log2(N) bits to A/D conversion.
increases noise by a factor Sgrt(N) (scale
Can decrease quantization errors (adjust for harmonic distortion)

