
 1

DSPExplorer – A Learning Environment for Digital Signal Processing
Ward Harriman - AE6TY ae6ty@arrl.net

Introduction
Several years ago I embarked on a self-guided attempt to learn about Software
Defined Radios. I was comfortable with simple RF design so I could implement the
RF front end and I was comfortable with programming so I expected I could ‘write
the code’. My biggest hurdle was in understanding and applying the principles of
Digital Signal Processing. This was a completely new discipline for me as I had only
the most tenuous memory of learning about it some 30 years before. The memories
were not good but I was convinced that I now had the time and the interest to gain
at least a passing understanding of this important technology.

 As I read about the principles and techniques of DSP I found myself wanting to try
my hand at actually writing code. For me, writing functional code was a kind of trial
by fire. If I could write functional code then I believed I had a passing understanding
of the principles involved. Unfortunately, in order to prove a program was
functional I had to run it and to run a program, I had to have some input and I had to
be able to verify the output. At this point, my progress fell precipitously because I
could find no easy way to generate input and verify output and hook everything
together.

My first attempt at writing programs came in the form of Excel1 spreadsheets. Excel
is very good at performing computations and graphing the outputs. Unfortunately,
it is not so good at generating input and it is a very poor programming language for
DSP applications.

My second attempt was to use C and write programs to generate input and to graph
the output. This approach allowed me to generate sophisticated input, write my test
program efficiently and graph the output… more or less. While functional, this
approach did not lend itself to general utility. C is a great programming language for
DSP work but without self-discipline the programs quickly degrade to a heap of
spaghetti. I was beginning to consider the idea of developing a methodology for
teaching DSP principles and unadorned C simply wasn’t a good vehicle. I believed
the newcomer would quickly be lost in the nuances of C programming rather than in
the topic of interest: DSP programming.

What I needed was a kind of “Integrated Development Environment” or IDE which
would provide a complete environment for demonstrating DSP principles. The
requirements I envisioned were:

• Provide a simple way to generate input of many forms

1 Excel is Microsoft Spreadsheet calculator much like Numbers from Apple. Both
Excel and Numbers are, undoubtedly, trademarked.

mailto:ae6ty@arrl.net

 2

• Allow the user to write programs in a C like language
• Provide a simple way to connect segments of code together
• Display both inputs and outputs and any intermediate ‘signals’
• Run on three different platforms: Windows, OS-X and Linux (of some form).
• Be free to anyone who wanted to use it.

I looked around the web for some time but could not find any applications of this
form. This is not to say they aren’t there, I just failed to find one. The engineering
applications typically used for these functions failed on several counts. First, they
were far from free. Second, there was a substantial learning curve involved with
using them. And so, I set off to make an application of my own.

What follows is an introduction to my IDE I named “DSPExplorer”. Unfortunately,
there is no getting around it: to get started in Digital Signal Processing, you have to
read and eventually write programs. Fortunately, the programs are generally quite
simple and certainly do NOT require anything even remotely sophisticated. All the
programming skill you’ll need to get through this paper is generally taught in the
first week of a middle-school course on programming. If you aren’t a programmer,
here’s your chance to start!

NOTE: This short paper does not discuss how to download or invoke DSPExplorer.
That information is best conveyed using short video tutorials on my website,
www.ae6ty.com, where you can also download DSPExplorer. Here, I will try to
show the basic capabilities of DSPExplorer and, hopefully, pique the reader’s
interest enough to download it and give it a try.

http://www.ae6ty.com/

 3

DSP Explorer
When I started to write DSPExplorer I had recently finished up my Smith Chart
software (SimSmith, also available at www.ae6ty.com) and was flush with
confidence. After some casting about, I ultimately decided that there would be four
fundamental tools in my IDE. First, I would need a text editor. The text editor didn’t
need to be very sophisticated since most DSP program segments are quite short.

Second, I would need an interpreter or compiler. Unfortunately, many computers
do not come with C compilers already installed. Rather than require the user to go
and fetch and install a compiler, I decided to provide one built in. My compiler is not
exactly C, more of a ‘C-lite’ but it is adequate for these purposes.

Third, I would need to provide a way for the user to structure the program and to
reuse blocks. I decided that representing modularity in DSP code was best done
using schematics. Thus, I would need a simple schematic capture capability where
the user would ‘wire together’ blocks of code.

Fourth, I would need a familiar output mechanism. Here, I decided to provide a very
‘oscilloscope’ like function. In addition to basic signal traces, the output subsystem
should also provide ‘spectrum analyzer’ type functions.

Picture 1 shows the default screen layout of DSPExplorer. In this screen I have
typed a program into the upper right hand window. Note that I have purposefully
introduced an error. When the compiler encounters an error it endeavors to
highlight (make red and underscore) the item it finds confusing. It doesn’t always
get it right, but it gets close. Additionally, the compiler attempts to describe the
nature of the error in the ‘error’ window.

The window on the upper left hand side is the schematic capture window. There is
only one block in our example so far and so only one block is shown. Note that there
is a red X drawn through the box because there is an error in the associated
program. The block also shows a single output called ‘s’.

The lower left hand window is the oscilloscope (and spectrum analyzer) window. In
this case I have chosen the variable ‘s’ as the trigger. This window can display any
variable in any module. There is no limit on the number of traces which can be
shown. Triggering can take the familiar forms of positive or negative edges and the
‘level’ can be adjusted using the ‘L>’ slider. The default is positive edges passing
through 0.

The lower right hand window displays text output. There are three different ‘panes’
in this window. The ‘error’ pane shows error messages from the compiler. The
‘console’ pane shows messages which come from the program. Messages can be
sent to the ‘console’ using the “println()” function call from the written program.
Finally, the ‘log’ pane is used by DSPExplorer to inform the user of various internal

http://www.ae6ty.com/

 4

events. Most DSPExplorer functions take place quietly in the background and the
‘log’ pane is rarely used.

Picture 2 shows the screen after I have corrected the error in the ‘first’ module,
selected the “Simulate” menu and then clicked on “Run”. Notice that there is now a
trace on the oscilloscope and that the ‘console’ pane has been displayed in the lower
right hand corner.

This simple example shows how the four basic windows are used in concert to
develop a program using DSPExplorer. Everything that follows is really fleshing out
the capabilities provided.

Module Creation
Modules are created by simply clicking on ‘Module’ and then ‘New’. DSPExplorer
will ask you for a name. Once you have provided the name, DSPExplorer will create
a schematic module of the same name and open the text editor so that you can write
your code.

Every time you make a modification to a module, the schematic, or the ‘scope,
DSPExplorer updates the associated files and attempts to compile the code. When
you exit DSPExplorer and then restart it, DSPExplorer endeavors to restore the
design to the same state as when you exited. It doesn’t do everything perfectly, but
it tries!

Variables
DSPExplorer provides two kinds of variables: double and complex. A ‘double’ is
represented internally as a 64 bit, IEEE-754 floating-point number. A ‘complex’ is
two doubles, one used to hold the ‘real’ part and one to hold the ‘imaginary’ part. All
variables must be declared before use and are initialized to zero by the compiler. All
variables are ‘static’ in that they maintain their values between calls.

DSPExplorer also provides for single dimensional arrays. Array indexes are always
positive and always start with 0; the ‘0’th element is the ‘first’. Essentially all
programming languages implement arrays in this way. DSPExplorer allow for
indexes outside the obvious range. For example, element “-1” is the last element in
the array. This is useful when implementing ring buffers. Sample declarations are:

 double d;
 complex c;
 double da[3];
 complex ca[4];

Basic variables and arrays can be accessed only in the modules in which they are
declared and only after they have been declared.

 5

It is almost always the case that a module will have some inputs and some outputs.
There is no ‘equivalent’ concept in C so I invented my own syntax. Inputs and
outputs can be arrays as well as basic variables. Some examples are:

 input double ind;
 input complex inc;
 input double inda[12];
 output complex[5];

It is often the case that when you write a module you will have an input which you
know will be an array but you won’t know what size until it is wired to another
module. In this case you can write:
 input double inda[];

There is one final variable type, the ‘parameter’, which can be used to initialize a
variable via a value in the schematic. Picture 3 shows how we can use parameters to
provide some constants to the compiler. Notice how the ‘parameter’ initial values
are reflected on the schematic. Of course, the value on the schematic can be
altered… that is the whole point!

This variable can only be a ‘double’ and is declared as:

 parameter double aparam;

Note that a ‘parameter’ is a compile time variable. Changing the value on the
schematic will halt simulation and cause the module to be recompiled.

One final thing about variables… variable declaration can be combined with
assignment. This is really just a typing shortcut but can prove very useful. You
already saw this in the ‘first.mod’ program shown in pictures 1 and 2. This
assignment should not be confused with ‘initialization’, the assignment is executed
every time the module is called.

Hold on here, we’ll write a program in a moment.

Multiple Modules
You can create new modules at will. DSPExplorer will maintain text files
corresponding to each of the modules. Additionally, DSPExplorer will maintain a
text file which contains the state of the schematic and scope panes. Let’s create the
two modules shown in picture 3. The first module will simply take two parameters
and construct a ‘complex’ output. The second module will compute the magnitude
complex number and print out the result.

 6

To run the program in Picture 3 simply click on “Simulation” and “Single”. We use
“Single” because we want to execute the program only once. If you hit “Run”,
DSPExplorer will continuously execute the schematic until you hit “Abort” or “Halt”.

The source code for “second.mod” is:

parameter double r = 1;
parameter double i = 0;

output complex o = complex(r,i);

Note how the complex output is constructed using a call to the function
“complex(r,i);”. No magic here, DSPExplorer simply takes two doubles and creates a
complex number, then assigns the number to the ‘o’.

In ‘magphz.mod’ we show how to take apart complex numbers. The ‘real()’ and
‘imag()’ functions do the obvious thing. We then use a ‘println’ to show the
arguments and the results.

One very important characteristic of DSPExplorer is shown in the result of the
println. Specifically, the result of the sqrt() function is a complex number which is
denoted by the “{5,0}”. Indeed, essentially every function provided by DSPExplorer
returns a complex value. When you assign a complex number to a double, the
double takes on the value of the ‘real’ part of the complex number. Thus:

 double r = real(in);

could have been written:

 double r = in;

A Simple DSP Example
We’ve now seen enough of DSPExplorer to write a useful demonstration program.
You can follow along in Figure 4.

First, let’s write a more sophisticated signal generator which will create an exactly
periodic signal. Let’s modify ‘first’ so that it will take two parameters which will
control the frequency of the output sin wave. We’ll call this module ‘exact’:

parameter cycles = 1; //how many cycles in a period.
parameter period = 128; // how long the period is.

double phase;
phase = phase + cycles/period;
output double s = sin(phase*2*3.14159);

 7

Then, let’s write a program which will mix two inputs. This module will be called
‘mix’. Mixing, of course, is simple multiplication:

 input double a;
 input double b;
 output double p = a*b;

Picture 4 shows the result of the mix. Look closely at the ‘scope’ section of the
picture. I have displayed the two inputs and the mix signal as normal oscilloscope
type traces. Additionally, I show the spectrum of the ‘mix’ signal. As expected, there
is a spectral component at the sum and at the difference of the two input signals.
Note that because the signals are ‘real’ signals, there is a ‘positive’ and a ‘negative’
frequency component to each signal… a total of four peaks.

As another DSP example, let us see what happens when replace all the variables in
‘exact’ and ‘mix’ with complex numbers. Exact is now:

 parameter cycles = 1;

parameter period = 128;
double phase;
phase = phase + cycles/period;
double r = sin(phase*2*3.14159);
double i = cos(phase*2*3.14159);
output complex s = complex(r,i);

In Picture 5 the exact.s and exact0.s signals are displayed as ‘complex’ traces; the
real part is a solid line and the imaginary part is a dotted line. Note now that the
spectrum of the ‘mix’ signal now has just a single peak. This is what happens when
we mix ‘complex’ or ‘analytic’ signals rather than ‘real’ signals. (An ‘analytic’ signal
is the same as the familiar ‘I/Q’ signal seen in most SDR down converters.)

The raggedness seen on the traces in Picture5 are the result of digital sampling of
the ideal waveform. To see what the ‘software’ sees, DSPExplorer allows you to
display a signal as ‘bars’ rather than as ‘lines’. The ‘mix.p’ signal in Picture 5 shows
just such a display.

A Complete DSP Example
A complete exploration of all the capabilities of DSPExplorer is far beyond the scope
of this short paper. Still, it is useful to see an example most of us can relate to. For
this application I chose to show the components of a simple phasing rig. The
DSPExplorer screen is shown in picture 6.

In this example, my input is a more generic signal generator called ‘sigGen’. SigGen
generates an I/Q pair. It continuously sweeps the frequency starting at the ‘lwr’

 8

frequency and working its way up to the ‘upr’ frequency and then back down. By
adjusting the ‘inc’ value, the sweep rate can be adjusted. The ‘ramp’ signal allows
one to shape the amplitude of the signal as a function of frequency. I don’t use this
feature here which is why it is ‘0’.

The output of the sigGen is essentially what would come from the familiar I/Q down
converting mixer. As you can see, the ‘Q’ channel passes through a shift register
(shiftReg). The effect of the shift register is to simply delay the signal by 64 samples.
This is used to compensate for the delay in the ‘I’ path.

The ‘I’ path is where most of the processing takes place. The I channel is buffered
using the shiftReg module. The shift register is 128 entries long to match the length
of the Hilbert Transform. The ‘mem’ output of shiftReg is the array of samples.

The Hilbert block generates a Hilbert Transform kernel which is 128 samples long.
The purpose of the Hilbert Transform is to provide a phase shift of 90 degrees for
every frequency. This kernel is passed through the Hamming window function. The
Hamming window will reduce the ripple introduced by Hilbert Transform.

The work is done in the ‘convolve’ block. In essence, the convolve block computes
the dot product of the two input vectors. The code is shown here:

input a[];
input b[];
output o;

double sum = 0;
for (double n = 0; n<sizeof(a);n=n+1)

 sum = sum + a[n]*b[n];
o = sum;

This function is such a common operation that DSPExplorer provides a builtin in
function to simplify the coding. The for loop above could be written “o = dot(a,b);”.

The output of the convolve block is the I channel with a 90 degree phase shift
applied. The upper and lower side bands are then easily computed. The upper
sideband is the sum of the delayed Q and Hilbert Transform of I. The lower
sideband is the difference.

The scope in picture 6 shows four traces. The topmost trace is shiftReg0.t which is
simply a delayed version of the Q channel. (There was no particular reason for
choosing this signal.) The next trace down is the spectrum of sigGen.s. When the
peak is to the right of center, the frequency is positive and when the peak is to the
left, the frequency is ‘negative’.

 9

The next trace down is the math.add or upper sideband. As you can see, there is a
signal there since the peak in sigGen.s is on the right hand side of the screen. The
bottom trace is math.sub which is the lower sideband. Math.sub is a flat line
indicating that there is no signal on the lower sideband of sigGen.s.

As sigGen sweeps the frequency up and down, the upper and lower sideband signals
alternate indicating that the phasing rig is working properly. For completeness,
picture 7 shows a lower sideband signal.

Other Experiments
DSPExplorer has been used to examine a wide range of DSP applications. A few are
listed here:

• Demonstrate the effect and utility of various windowing functions.
• Show how Quadrature Error Correction can be done.
• Demonstrate alternate phasing architectures which don’t use the Hilbert

Transform.
• Explore implementations of Digital Automatic Gain Control.
• Demonstrate different ways Window kernels can be generated.
• Show how using the FFT and inverse FFT can replace the Hilbert

Transform and the convolve function.
• Demonstrate how to use the FFT and the IFFT to perform more precise

spectrum analysis.
• Demonstrate up and down conversion using decimation rather than

multiplication.
• Demonstrate other filter techniques such as Frequency Sampling, Comb,

and Infinite Impulse Response filters.
• Show how the Sliding DFT and single frequency detectors function.

Summary
When I started to try to learn about Software Defined Radio I found that there was
no easy way to verify my understanding without actually writing programs. But
when I started to write programs I found myself lost in the intricacies of
programming inputs, tests, and graphing outputs. When I went looking for a better
way, I found none and I was driven to develop an Integrated Development
Environment. The hope was that the IDE would provide a generic framework for
DSP program development and that this generic framework would allow me to
concentrate on my programs. DSPExplorer was born.

DSPExplorer is a fairly comprehensive framework for developing DSP software
techniques. It allows the user to generate nearly any test signal simply by writing a
program to generate the signal. Blocks of DSP code can be written in a C-like
language and connected together using a simple schematic capture tool. All
program variables can be displayed in ‘time’ or in ‘frequency’ using a simple

 10

‘oscilloscope’. DSPExplorer is completely self contained and requires no external
hardware or software to operate. It will operate on any system which supports Java.

My hope is that by providing a self contained development environment I can entice
the reader to try writing a few DSP programs. Nothing teaches like doing, and
DSPExplorer makes doing so much easier! I urge you to download it at
www.ae6ty.com and give it a try.

http://www.ae6ty.com/

